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On the solutions of the anisotropic Heisenberg equation 

N A Belovt, A N Leznovf and W J Zakrzewski 
Department of Mathematical Sciences. University of Durham, D a d m  DH1 3L& UK 

Received 4 November 1993, in final form 28 lune 1994 

Abstract. A method based on the discrete group of the inner symmefq of integrable systems 
is used to derive explicit formulae for soliton-like solutions of Heisenberg ferromagnets (with 
biaxial or uniaxial anisotropy). The solutions are given in terms of expressions which involve 
m i o s  of two determinants. 

1. Introduction 

In this paper we demonstrate how the use of the method of the discrete group of 
symmetries of integrable systems (auto-Backlund transformations) can be used to derive 
explicit expressions for the soliton solutions of such systems. As an example we study 
the Landau-Lifschitz equation (the equation for a Heisenberg ferromagnet with biaxial 
or uniaxial anisotropy [ 11) as this equation is sufficiently complicated to demonstrate the 
usefulness of our approach and at the same time is very important because of its many 
applications in physics. 

All the important properties of this equation are contained in the following chain of 
equations (in general, an unlimited one): 

(1.1) 
- @n(@iZ + (olezs + y + cre-9)’ - 1 - 1 

exp(@i+l - @i) + 1 exp(@i - h-1) + 1 26; 

where @; are the unknown functions, s is an independent variable, @{ = d@Jds, and 01 

and y are arbitrary parameters of the model (related to the moments of inertia of a non- 
axial-symmetric ‘rigid body’). The transformation (1.1) describes the gaup  of the discrete 
symmetries of the Landau-Lifschitz equation. 

Let us add that this problem has been studied before. In fact, reference [Z] considers 
this problem from the point of view of its Lax representation while [3] presents a discussion 
based on the Hamiltonian formalism. 

2. Landau-Lifschitz equation 

The Landau-Lifschitz equation arose out of the generalizations of the Heisenberg model of 
a homogeneous ferromagnet. In its original form [4] the equation describes the evolution 
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5608 N A Belov 

of a unit vector field S (Sz = l), which is a function of one space variable ( x )  and time 
( t ) .  This evolution is described by 

S = S x S"+ S x (jS) .f = diag(J1. Jz, J s )  (2.1 ) 

where ' and ' denote the time and space derivatives, respectively. It is convenient [5] to 
perform a stereographic projection and so to introduce complex fields U and U: 

Then (disregarding the condition of reality (i.e. that U = ut)) (2.1) becomes equivalent to 
the following set of two equations: 

u ~ z +  P ( ~ )  I a 
li+u"-2u + - - P ( U )  = 0 

i + u u  2au 
U ' Z +  P ( U )  I a + - -P(U)  = 0 

I + ~ U  2 a u  
-U + U" - 2u 

(2.3) 

where P(y) = ay4 + yyz +a, U denotes iarr/at, and, as before, ' denotes the derivative 
with respect to x .  Moreover, 01 = ~ ( J z  - 51) and y = ~ ( J I  + 52) - 53. In the case when 
the 'rigid body' is axially symmetric (i.e. when JI = Jz, or JZ = J3 or J1 = 33) we find 
that a = 0 and y = 6201, respectively. 

The system of equations (2.3) is invariant with respect to the following discrete nonlinear 
transformation (U -+ U ,  U -+ V), where 

(In U)" + a ( u z  - u - ~ )  
- (2.4) 

1 1 1 
U 1 + U V  1 + u u  [(lnu)']z+(uu2+y+01~-2' 

U = -  

This can be verified by a direct computation, or checked by using, say, REDUCE. A similar 
transformation was found for other equations 1671 and was shown in [6] to have many 
far-reaching consequences; namely, it can be used to generate new solutions from the old 
ones. 

Thus the transformation (2.4) plays the key role in our work. In fact, as in 161, we will 
use it in the following way. Instead of solving the original equations (2.3) we will consider 
(2.4) and &eat it as an iterative procedure for generating from one set of functions U and 
U another one. Then having 'solved' this iterative procedure we will find that if we start 
from a given solution of (2.3) we will have many other solutions, among which we will be 
able to find the ones which satisfy the reality condition ut = U .  

Thus, if we denote U and U as ui and ui,  and U and V as ui+, and ui+], respectively, 
we see that (2.4) becomes 

(In[((ln U J ) ~  +au; + y + ~lu;~])' 
(2.5) 

1 1 1 
ui 1 + Ui+LUi+l 1 + uiui 2(ln vi)' 

--= Ui+l = - 

which, in what follows, we will call the Landau-Lifschitz lattice. 

anisotropy) was first considered in [6,7]. 
It is in this form that the invariance of the Heisenberg model (with biaxial or uniaxial 
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Looking at (2.5) we observe that, in general, the chain of equations (2.5) is infinite 

[(In ui)‘12 + cfuf + y + = 0 .  (2.6) 

However, the transformations (2.4) and (2.5) are invertible and so (2.5) can be rewritten 

except when 

In this singular case we cannot express ui+l and vi+, in terms of ui and vi.  

as 

(1n[((lnui+l)’)2+auTt, + y +~U;:~I)’ 
(2.7) - - 1 1 -- 

1 + uiui 1 + Ui+lVi+t  24+, 

Thus, if equation (2.6) is also satisfied by some U, then the Landau-Lifschitz chain is 
limited from both ends. In this case we have (2.5) together with the boundary conditions 

[ ( l n ~ ~ ) ’ ] ~ + c f u ~ + y + c f u ~ ~  = o .  (2.8) 

Similar equations have been studied before. In fact, reference [7] presents solutions of 
the corresponding discrete lattices for many integrable systems. The lattices which appear 
in [6] were all related (in a direct or an indirect form) to the Toda lattice. The chain 
described by (2.5) and (2.7) is more complicated and, as we will show, is related to the 
doubly periodic elliptic functions and contains the Toda lattice as a non-trivial limiting case. 

[(In u o ) ‘ ~ ~  +cfu; + y + cfuo -2 - - 0 

3. Solution of the linear problem as the initial condition for the Landau-Lifschitz 
lattice 

Our solution of the chain (2.5) will be presented in the next sections. Here we will discuss 
the constraints on the solutions of (2.3) which arise from the boundary conditions (2.8). 
Thus we want to find the initial functions uo and vg which satisfy (2.3). But let us observe 
that if we impose 

ub2 + P(u0)  = 0 (3.1) 

then U; + &3/auo)P(uo) = 0 and so we see that the first equation in (2.3) is satisfied if 
U0 = 0. So ug is given by 

/ “ O  & = x  + C 
or we may find an expression for uo in terms of some elliptic functions. 

Let us multiply the first equation in (2.3) by UO, the second by uo and subtract. We find 

(.:U; - N u ;  - U;) - + 2cf - .  
1 + uouo 

Then we introduce uo = es and Y = [l /( l  + UOUO)] - and observe that Y satisfies 

v; - U; 
(1 + uoVo)2 

- Y + [s’(Y, + 4 - 2Y”)1’ + 201 = O  

(3.3) 

(3.4) 
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where Y, = aY/as. However, from (3.1) we see that (s‘)’ + y + a(e” + e-”) = 0, 
s” + a(ezi - e-”) = 0 and so we find that the equation for Y can be rewritten as 

- Y + ( zPY*) ,  - (PY,),, t or[Y(e” -e-”)], = o (3.5) 
where we have replaced the variable x by s and introduced P by P = P(e-“) = 
.(e” +e-“) + y. To solve (3.5) we introduce an unknown function @ given by 

4 = ~ P Y *  - PY, + or(ez’ - e - & ) ~  (3.6) 

(3.7) 
where A = .(e” -e-”). 

Shortly we will show that this equation is closely related to the Lame equation whose 
solutions can be given in terms of Jacobi elliptic functions. First, however, we would like 
to present some other forms of this equation which represent some other familiar problems. 

To do this let us consider the stationary case, i.e. we assume that xt = hx (bearing in 
mind that in the general case we can represent the t dependence of x by f dheA‘X(A) dh). 
Then, it is possible to reduce (3.7) to a stationary one-dimensional Schrodinger equation 
I,//’ + U @  = 0. To do this we eliminate the terms involving the first derivative by setting 
x P-’I4 = $b and find that the equation reduces to 

Y = 

and reduce the problem to a linear equation for the function x = e-%, 

Pxss - AX. f ~r = 0 

where g1.2 = y f 2ci. 
In the cases of higher symmetry (or = 0, or y = &k) (3.8) is solvable in terms of 

elementary functions. Note that if we rewrite (3.8) in terms of the original variable x (and 
not s) we find that the equation for the function $b = x/(ds/dx) (equation (3.7)) takes the 
form 

(3.9) 

where Q ( x )  may be expressed in terms of the Weierstrass doubly periodic RO function, 
and in the case of the higher symmetry (or = 0, or g l , ~  = y 2201 = 0) (3.8) becomes the 
familiar heat equation. 

Next we return to the stationary form of (3.7) and introduce P = .(eb +e-”) + y as 
our independent variable. We obtain 

= O .  1 AX 
x P P + -  -+--- XP + 2 Y P - g 1  P - g z  P 1 4 w  - gl)(p - sz) (3.10) 

This equation, Heun’s equation, is very close to the Lame equation. To get the Lame 
equation we return to the stationary form of (3.7), differentiate it with respect to s and 
introduce a new function B = x ~ .  The equation for B is already ?he Lame equation in the 
variable P ,  i.e. 

In future investigations we will use solutions of this equation, which can be given in terms 
of elliptic functions, to obtain soliton solutions of the Landau-Lifschitz equation. In this 
work we restrict our attention to the general study of the problem and apply it to some 
simple cases. 
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4. Recurrence relations for the Landau-Lifschik lattice 

If we want to find a solution of the semi-infinite Landau-Lifschitz chain (starting from one 
end) then it is convenient to take the first step in the following form (bearing in mind that 
this form resembles the solution discussed in the previous section): 

561 1 

where x is an arbitrary function and, here and below, ' denotes d/&. Then, let us seek 
solutions of (2.5) of the form 

1 -Crn-1 1 + o;, " -e->- 
1 + U,-l 1 -0, " -  U -e$- " -  

with the boundary conditions U-1 = 0 and 00 = (Inx)'. 
In this notion the right-hand side of the chain equation (2.5) takes the form 

(4.2) 

(4.3) 

where 

A. = (P(U;  +U:) - A s ) '  

and where the functions P and A are the same as in the previous section. The equation 
(2.5) itself becomes 

or, after some trivial manipulations, 

or 

An - u~- I (& + 0 e A d  
(1 - 20n~tt-i)(& + unAn) + u~-Iu;A, ' 

U"+] = 

However, we can rewrite (4.4) in the form 

(4.4) 

(4.5) 

(4.6) 

(4.7) 
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Using these formulae we find that 

det( ;, ;,) 
det ( x ’  L P W - x ‘ )  x“-x 1 U ,  = X‘ 

U-] = o  U0 = - 
X 

where L = i ( x )  = Px” - AX‘. 
All calculations can be carried out all the way to the end so that we can obtain an 

expression for U”+] in the form of a ratio of two determinants of the (n + 2) order. The 
calculations are simpler in the case of axial symmetry (when, for instance, LY = 0). This 
special case is of interest by itself and in physical applications it is referred to as the XXY 
model or the model of the uniaxial anisotropic system. We will discuss this case in the next 
section, where we present an explicit calculation of u2 and u3 in the case when LY = 0. In 
the appendix we generalize these results to arbitrary U”. These calculations will serve us as 
a ‘warm-up exercise’ for the general case which will be discussed in following sections. 

5. Calculation of uz and c73 when CI = 0 

First we introduce the following abbreviations. The (arbitrary) function x will be denoted by 
0 (thus 0 = x) and its pth derivative will be denoted by p (thus p = dPx/dsP). Moreover, 
in the next section we shall use the symbol p for the expression p - ( p  - 2) = 
(dpX/dsp) - (d”-2X/dsp-2), which, as we will see, often arises in our calculations. Note 
that ŝ ’ = (s + 1) - (s - 1) = (s + 1). In this section we show that, when LY = 0, uz and u3 
are given by 

/O 20 31 42\ 

I 
U2 = U3 = 

/O U )  3 l \  [I 20 31 42\ 

I 2 31 42 53 

3 42 53 64 
det I det I 31 42 

( 2  42 S 3 1  

\ 4  53 64 1sI 

From these expressions it is easy to guess the form of a general uk, 
To prove (5.1) we observe that (4.4) tells us that 02 is given by 

l n ’ [ u ; + ( ~ 1 ) ~ - 1 ] ( 1  -u~uo)+u;u~ 

ut((] - - w o ) [ 1 n ( ( ~ [ +  ~ 2 -  1)101)]’++0} 
U2 = (5.2) 

and a similar expression holds for u3 (the indices on all U ’ S  have to be increased by 1). 
So we see that to calculate u2 (and us) we need U; (U;), U;  + (U# - 1 (U; + ( ~ 2 ) ~  - l ) ,  
1 - uoul (1 - UIUZ) and U(UO (u~uI) .  

Let us first calculate U; (U;). To do this we observe that if we put uj = SI Is2 then 

(5.3) 
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To perform the differentiation of our determinants we observe that our matrices have 
the property that each of their rows is the derivative of the row above. Hence, when we 
differentiate their determinants it is sufficient to differentiate only the last row, as all the 
other contributions vanish. The differentiation of the last row increases all the integers in 
it by one (i.e. 2 becomes 3,42  becomes 53, etc) and so we find that the numerator of (5.3) 
(in the u2 case) becomes 

( I  20 31) (0  20 31) (I 20 31) (0 2l 31) 
det 2 31 42 det 1 31 42 -det z 31 42 det I 31 42 

4 53 64 2 42 53 3 42 53 3 53 64 
0 1 2 3  

= det (" 31 42 ")der (I 2 3 4 s  ') . 
3 4 5 6  

(5.4) 

This result follows from the Jacobi identity for the determinants [SI (the determinants 
of the matrices, which have (iy il) in common). Similarily we find that 

Next we calculate 

This time we have to calculate si -31 and si - s?. We expand each expression along the 
last row and find that, say, in the i = 2 case 

0 20 42 

(5.7) 

and so 

det(' 1 2  31 ' I )  42 
2 u;+ul - 1 =- 
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In a similar way we find that 

0 1 2  

1 -a]a2 = 

der(: :)det(: 2 42 ti) 53 

with a similar expression for 1 - OIUO. 

Next we calculate the derivative of log(a,9/y2), which appears in (5.2), where 
a, B and y are defined as in (5.8). This means that we have to calculate 
( B Y f f ' +  B'ffY - ZY'ffB)/ffBY 

Putting in the concrete expressions for a,  @ and y in the uz case we find that 

0 1 2 3  
a 'y -ya '= -de t (  0 2 0  )de t ( '  ') 

1 31 2 3 4 5  

3 4 5 6  

and 

0 20 31 42 

20 31 I 31 42 53 
31 42 

3 53 64 75 

(5.10) 

(5.11) 

Finally, collecting all the term, factoring them out etc, we find that us is given by a 
ratio of two expressions, the numerator of which involves a product of two determinants 
and the denominator a difference of two products. The denominator is given by 

o m 31 42 0 1 2 3  

det ( I  2 42 31 42 53 .)det(i 64 i !i)-det(i l ) d e t ( i  %I) (5.12) 
3 53 64 75 3 4 5 6  

which we calculate by expanding along the last row. We find that this expression is given 
by 

2 31 42 53 
3 41 53 64 
4 53 64 75 

(5.13) 

This is all that is required to demonstrate our claim that u3 (and 0 2 )  are given by (5.1). 

6. An example 

In this section we determine explicitly some solutions of (2.3) in the case when a = 0. We 
leave the discussion of the generality of these solutions to a further publication. Here we 
just want to show that our procedure is sound, i.e. that we can find non-trivial solutions of 
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the Landau-Lifschitz equation with all the reality conditions properly imposed. So, here, 
we look for simple non-trivial solutions of (2.3). 

To find such solutions we have to first solve (3.7) for the function x .  However, for 
a = 0 this equation is just the heat equation and it is easy to write down its solutions. The 
simplest solution (apart from x = 0) is probably 

x ( x , t )  = Aexp(i8) (6.1) 

where 6 = pZt + p2, and where and A are arbitrary complex numbers. Here, for 
simplicity, we have chosen, y = 1 in the definition of P ( y )  in (2.3). which gave us s = ix. 

With this choice we find that uo = constant and so we see that we have obtained a 
time-independent solution for the Landau-Lifschitz field U. To find a time-dependent field 
we need to start with a more complicated x . 

To do this we consider a slightly more general solution of (3.7); namely 

where 6& = pit + &x2, and where A k  and Pk are, at this stage, some arbitrary complex 
numbers. With this choice of x we find that 

and 

(6.3) 

Next we impose our conditions of reality of U .  To do this we require that U;  = ug. This 
will be true if u2 = 0. When we calculate g we find that 

and so we see that we have a condition on p’s: 

kl+pZt&3+plPZp3=0. (6.6) 

However, this is not enough; to guarantee the reality of our solution of the Landau- 
Lifschitz equation we also have to impose U $  = uo. Given equation (4.2) we see that this 
requires U! = -U,. In this case our solution is given by U = U[. 

It is easy to see that there exist many solutions of (6.6) and of U: = -ul. To see this 
we expand all the terms in U; = -a1 and find that many of the resultant conditions are 
satisfied if pk satisfy (6.6) and either all are real (i.e. p k  = pi) or one p is real and the 
remaining two are complex conjugates of each other. 
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The remaining conditions can then be treated as conditions on A t .  In the first case 
(when all jLk are real) Ak have to satisfy 

t t while in the second case (when wz = p,, pl = p3) we have 

Af A i  
-(P2 - Pd2(1 + P2P3) =-(PI - Pd2(1 f PIP3). 
A1 Az 

Notice that we can set, say, A I  = 1 and that, say, the last equation in (6.7) and in (6.8) 
is automatically fulfilled if all the other equations are satisfied. 

There are various solutions of these equations. In the case when Pk are real a natural 
choice is to take A h  real. Then (6.7) become equations for Ai ,  which should have positive 
solutions. Thus we have to find PX, k = I ,  2 and 3 such that (6.6) is satisfied and A i  are 
positive. It is easy to check that if we choose, say, PI = 0.5, pz = 0.1 (and ~3 is given 
by (6.6)) the expressions for A: are indeed positive and we have an explicit solution of the 
Landau-Lifschitz equation. 

In the second case the situation is even simpler, as this time (6.8) are satisfied if we 
take, say, A2 = 1 and 

In this case it is easy to see that the solution U is of the ‘soliton’-type-i.e. Ss (see 
equation (2.2)) is non-zero in a localized region. 

We will not discuss any further properties of these solutions, nor try to construct more 
general ones. This will be done in our further work. Our reason for giving these examples 
here has been to demonstrate that the method works, i.e. that it gives us solutions of the 
original equation with all the reality conditions explicitly fulfilled. 

7. The general case (cy # 0) 

In this section we will present explicit formulae for the recurrence relation for uk (4.5) in 
the general case (Le. with no symmetry). We do not give a proof of the derived expression 
as our method of proving it is quite involved and, in the main, follows quite closely the 
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steps used in the proofs given in the previous sections, except that all the calculations are 
much more cumbersome. We believe that a simpler proof of our results may be found by 
considering. in more detail, the group-theoretic nature of the Landau-Lifschitz chain with 
two fixed ends (i.e. limited from both ends) and given in terms of the theory of semi-simple 
algebras and their representations, but so far we have not found it yet. 

To present the explicit expression for uk in the general case we introduce the following 
infinite-dimensional matrix: 

XI'  - x L' L" - L (L.2)' .. 

x' L' L"-  L (L.2)' L'" - L" (L3)' .. 

L' (L2)' R(L'" - L") (L3)' L"' - L'" (L4)' .. 

I x' x L R(x"' - x') L2 R(L"'-L') L3 .. 

L Lz  R(L"'-L') ( L 3 )  R(L" - L"') L4 . .  

\ :  : 

The form of this matrix is, hopefully, obvious from the enties that are given explicitly in 
(7.1). Then, our expression for uk is derived from (7.1) and is given by 

(7.2) 

where the symbol llxll denotes the matrix of the (k + 1)th order which is obtained from 
(7.1) by taking its submatrix consisting of entries only in rows 2 , 3 , .  . . k + 2  and columns 
1,2, .. . k + l ,  and IIx'II denotes a similar matrix with entries from rows 1,2,. . . k + l  and 
columns 2,3, . . .k+2. Also ck = 

8. conclusions 

We have shown in this paper how the exploitation of the existence of a discrete group of 
symmetries of a given equation can help us in determining its solutions. In this paper we 
have demonstrated this for the example of the Heisenberg ferromagnet (with uniaxial or 
biaxial anisotropy) described by the Landau-Lifschitz equations. Our main result for these 
equations is given by (7.1). 

We would like to stress that, although in this paper we have concentrated our attention 
on the Landau-Lifschitz equations, our method is completely general and could be applied 
to any completely integrable systems. In each of these cases one has to take the following 
steps: first, one has to rewrite the equations which describe the group of the discrete 
symmetries as a system of equations for the corresponding lattice. This system of equations 
is completely integrable due to the integrability of of the symmetry equations. Next one 
derives the solutions of the lattice equations which arise when we require that this chain of 
equations is l i i t e d  from both ends. The solutions one obtains depend on several arbitrary 
complex parameters. Finally, we impose the condition of reality (this we do by requiring 

from 0 to N. This condition of reality fixes some of OUT free parameters. Then, the solution 
in the middle of the chain satisfies the reality condition which we want our solution to 
possess, namely U N ~ Z  = u ~ , ~ .  

that vo = uN t and ug = vf, (N-even), where we have assumed that the finite chain stretches 

t 
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Appendix 

Here we generalize the results of section 5 to the case of arbitrary n.  We will use the 
induction method to prove our general formulae for uk (k 2 0). 

In OUT general proof we will use the notation of section 5 ,  i.e. we put 0 for x and p for 
and its pth derivative. The matrices which arise in our calculation have the property that all 
their rows can be obtained from a row of functions by differentiating them a certain number 
of times. So, we will denote them by Ila1, u ~ ,  . . .,a,; SI, SZ, . . . , s,ll with the understanding 
that the Ith row of such a matrix is given by U:, U;, . . . ,U:, where ai are some functions 
of s and si some non-negative integers. 

The determinants of such matrices will be denoted by 

d e t l l a ~ , a ~ ,  . . . ,an;  SI, SZ, . . . , s.ll = (al. UZ,.. . ,an; SI. sz, . . . ,sJ. 

by 

(A.]) 

In this notation, the general form of the solution of the Landau-Lifschitz chain is given 

A A  

(1,2,3 ,..., 2n+1;0,1,  ..., 2n) - _  SA - O i n  = 
(0,T )..., 2n+1 ;0 ,1 , . . . ,  2n) s& 
(o ,kT, .  . . I ,2n + 2; 0, I ,  . . . ,2n + I )  
(l,T,T ,... ( 2n+2;0 ,1 , . . . ,  2n+1)  

(-4.2) 
sk+] 
Sk+] 

=- Uk+l = 2 

* 
where n 0.1 = 1, and (-1) 0. 

To prove this we observe that OUT general formulae for U,+] (4.5) involve U;, U:+.:- 1 
and 1 - o;- Iu~.  We shall calculate them in an explicit form; afterwards, the checking of 
the final expression reduces to a very simple problem. 

For definiteness we shall limit ourselves to the case of odd i (the case of even i is very 
similar). First we calculate U&+]. We find 

The last equality, again, follows from the Jacobi identity [XI. 

(which can be checked by a direct calculation): 

det 1111; al,. . . , UA; b ~ l l  det Ilh; al. .. . , U ~ - I ;  bzll 

To calculate U,' + U: - 1 and 1 - ui-10; we use the following property of determinants 

- det I l k  a], . . . ,a,-,; bllldet 11h; a],   an-^; b2ll 
= detlI[1,[2;at, ..., a,-~lIdetIlal, ..., a.-~,b~,bzll (A.4) 

where ai, bl, bz. I I  and IZ denote arbitrary (n t 1)-dimensional column vectors. 
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Next, using the notation of (A.2), we observe that, as in (5.6), 

We calculate the differences of the terms in the numerator of (AS). Thus for ( S ~ + ~ ) ' - S ; ~ + ,  

we have 

(sk+])' - ^ ^  
= (o,z, 3 , .  . . , 2 n  + 2; 0, 1 ,  . . . ,2n,  2n + 2) 

-(I,?, .. . , k + 2 ;  0,1.. . . ,2n+ 1) 

- 116,. . . , 2 n  + 2; 0,2 ,  . . . , BZ, 2n + 2) + 6,. . . , 2n  + 2; I ,  . . . ,& + I)] 
+ 2[@, . . . , 2n  + 2; 0, 1.3,. . . ,2n,  2n + 2) 

+ (T, . . . ,2n + 2; 0, 2, . . . ,2n + I)] 

+(-1)k[(2, ..., 2n+2; 0, . . . ,  k - l , k +  1, . _ . ,  2n,2n +2) 

+ (2,. . ..2n + 2 ; 0 , .  . . , k  - 2, k ,  ..., 2n + l)] + ' ' '  . 

- 
= o ( T , ~ . .  . . ,2n  + 2; 1, . . . ,2n + 2.n + 2) - 

2_ - - 
A 

(A.6) 

The simplest way to calculate the sums of determinants in square_brackets in (A.6) 
is to represent the functions 2 by their Laplace transforms, i.e. put 2 = JeAs@(h)dA, 
3 = Jhek@(h)dh, etc. Then each of the determinants may be represented by an 
(2n + 1)-dimensional integral over dhl . . . dhb+l with the integrand being proportional 
to the Vandermonde determinant W(h1, ... ha+,), which is antisymmetric with respect to 
the permutation of any pair of its arguments. 

Let us calculate, for example, the sum of the two determinants which multiplies (1) in 
(A.6). We find 

/ai ...dAa+ i ~ ( h i ) @ ( h z ) . . . @ ( h b + i )  

x [hzh:. . .g;:; t hihi. . . hZ::]W(hi. .  . A b + ] )  

= /ai . . . d A ~ t i @ ( h i ) . . . @ ( h a + i )  

as each of the terms of the added sum corresponds to an expression which is symmetric with 
respect to the permutation of any two indices of A'S and so vanishes after the integration 
with the Vandermonde determinant. 

But the last step of (A.7) can be rewritten as 

Ai ... A:" Ay" 

/ dhi . . . d b + i  @(hi). . . @ ( h + i P i h : .  ..&.+I . . . .  
I hm+i ... A$,+, A:$ 

* A  -.---.-A 

= (2,3, .. .,2n + 1,2n+3;0 ,  1,2, .  . ., 2n + 1). (A.@ 
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Performing such a calculation for each term in (A.6) and in (AS) allows us to prove our 
formula (A.2). 

In the same way we calculate all the other terms in (A.6) and find 
- A  

- sk+] 2 = (0,2,3, .  . . ,2n + 2; 0, 1, , . . ,2n, 2n+ 2) 

- (1,2,. . . ,2n+2; 0.1,. . . , Zn + 1) 
A A  

=(O,T,? ,..., 2n+1,2n+3;0,11 ..., 2n,2n+1). 64.9) 
The calculations of the second term in the numerator are the same and we obtain 

In this way we find that 
2 4+* + % + I  - 1 

A-----.. 

(0,1,2 ,..., 2n+l;O.l .  . . . ,  Zn+l)@,? ,..., 2n+2,2n+3;0,11 ..., 2n+l)  

%+l 

- 
2 I 

(A.ll)  

The calculations of U: + U: - 1 in the case of even i are very similar. In  the case when 
i = 2n we find 

(0 ,1 , .  . . , 2n, 0,1,. , . ,2n)(2,3,. . . ,2n  + 2; 0,1,. . . ,2n) 

S k  

A A  

2 (A.12) 

When we calculate 1 - ui-~ui it is necessary to use the definition (A.2), expand the 

u & + u k - l =  1 2  

determinants of the ith order along the last row, use (A.4) and then observe that 
^^ h 

(0, 1,.  . . , i ; O ,  1, .  . .i)(2,3,. ..i + 1;0, I , .  .., i - 1) 

(1,2, ..,, i ;O ,  1. . . .  , i  - 1)(0,2 ,..., i + l ;O,2, .  ..,i + 1.0, 1, ..., i) 
1 -ui-,ui = ^ ~ - h A  h 

(A.13) 

Finally, repeating, step by step, all the calculations (5.10)-(5.13) of the previous section we 
have convinced ourselves about the validity of our recurrant formulae (A.2). 

A general solution of the following one-dimensional chain system, 
Let us add that as a result of our formulae we can make the following statement: 

(A.14) 

where y is an arbitrary constant, (b = a9/& and on which the following boundary conditions 
are imposed 9-1 = pn+1 = 0, is given by the expressions 

(A.15) 

Here ui are defined by (A.2). x are given by x = CLoC,eAJ, where C, are arbiuary 
constants, and where 

CA. + A&)-y + h. ... h, F O .  (A.16) 

satisfy the following relation: 

CY odd oumber of indices. a#Q#v 
all differen* 
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